| v

ERLANG

Compiler

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.
Compiler 7.0.4

March 14, 2017

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 14, 2017

Ericsson AB. All Rights Reserved.: Compiler | 1

1 Reference Manual

The Compiler application compiles Erlang code to byte-code. The highly compact byte-codeis executed by the Erlang
emulator.

2 | Ericsson AB. All Rights Reserved.: Compiler

compile

compile

Erlang module

This module provides an interface to the standard Erlang compiler. It can generate either a new file, which contains
the object code, or return a binary, which can be loaded directly.

Exports

env_compiler options()

Return compiler options given via the environment variable ERL_COWPI LER_OPTI ONS. If thevalueisaligt, itis
returned asis. If itisnot alist, itisput into alist.

file(File)
Isthesameasfil e(File, [verbose,report_errors,report_warnings]).

file(File, Options) -> CompRet
Types.
CompRet = ModRet | BinRet | ErrRet
ModRet = {ok, Mbdul eNane} | {ok, Modul eNane, War ni ngs}
Bi nRet { ok, Modul eNane, Bi nary} | {ok, Mbdul eNane, Bi nary, War ni ngs}
Er r Ret error | {error, Errors, Warni ngs}

Compiles the code in the file Fi | e, which is an Erlang source code file without the . er | extension. Opt i ons
determine the behavior of the compiler.

Returns { ok, Mbdul eNane} if successful, or error if there are errors. An object code file is created if the
compilation succeeds without errors. It is considered to be an error if the module name in the source code is not the
same as the basename of the output file.

Available options:
basi c_val i dation

This option is afast way to test whether a module will compile successfully. Thisis useful for code generators
that want to verify the code that they emit. No code is generated. |f warnings are enabled, warnings generated by
theer| _| i nt module (such aswarnings for unused variables and functions) are also returned.

Useoptionstrong_val i dat i on to generate all warnings that the compiler would generate.
strong_val i dation

Similar to option basi c¢_val i dat i on. No code is generated, but more compiler passes are run to ensure that
warnings generated by the optimization passes are generated (such as clauses that will not match, or expressions
that are guaranteed to fail with an exception at runtime).

bi nary

The compiler returns the object code in a binary instead of creating an object file. If successful, the compiler
returns{ ok, Modul eName, Bi nary}.

bin_opt _info

The compiler will emit informational warnings about binary matching optimizations (both successful and
unsuccessful). For more information, see the section about bin_opt_info in the Efficiency Guide.

Ericsson AB. All Rights Reserved.: Compiler | 3

compile

conpr essed
The compiler will compress the generated object code, which can be useful for embedded systems.
debug_info

Includes debug information in the form of abstract code (see The Abstract Format in ERTS User's Guide) in the
compiled beam module. Tools such as Debugger, Xref, and Cover require the debug information to be included.

Warning: Source code can be reconstructed from the debug information. Use encrypted debug information
(encrypt _debug_i nf o) to prevent this.

For details, see beam lib(3).

{debug_i nf o_key, KeyStri ng}
{debug_i nf o_key, { Mode, KeySt ri ng}}

Includes debug information, but encrypts it so that it cannot be accessed without supplying the key. (To give
option debug_i nf o aswell isallowed, but not necessary.) Using this option is a good way to always have the
debug information available during testing, yet protecting the source code.

Mbde isthetype of crypto algorithm to be used for encrypting the debug information. The default (and currently
the only) typeisdes3_chc.

For details, see beam lib(3).
encrypt _debug info
Similar tothedebug_i nf o_key option, but thekey isread froman . er | ang. crypt file.
For details, see beam lib(3).
makedep
Produces a Makefile rule to track headers dependencies. No object file is produced.

By default, this rule is written to <Fi | e>. Pbeam However, if option bi nary is set, nothing is written and
theruleisreturnedin Bi nary.

For example, if you have the following module:

-module(module).

-include lib("eunit/include/eunit.hrl").
-include("header.hrl").

The Makefile rule generated by this option looks as follows:

module.beam: module.erl \
/usr/local/lib/erlang/lib/eunit/include/eunit.hrl \
header.hrl

{makedep_out put, Qutput}

Writes generated rules to Qut put instead of the default <Fi | e>. Pbeam Qut put can be a filename or an
i 0o_device(). To write to stdout, use st andar d_i o. However, if bi nary is set, nothing is written to
Qut put and the result isreturned to the caller with { ok, Mbdul eNane, Bi nary}.

{makedep_t arget, Target}
Changes the name of the rule emitted to Tar get .

4 | Ericsson AB. All Rights Reserved.: Compiler

compile

makedep_quot e_t ar get

Charactersin Tar get special to make(1) are quoted.
makedep_add_m ssi ng

Considers missing headers as generated files and adds them to the dependencies.
makedep_phony

Adds a phony target for each dependency.

1 PI
Produces alisting of the parsed code, after preprocessing and parse transforms, inthe file<Fi | e>. P. No object
fileis produced.

e
Produces alisting of the code, after all source code transformations have been performed, inthefile<Fi | e>. E.
No object file is produced.

1 SI

Produces alisting of the assembler codein thefile<Fi | e>. S. No object file is produced.
report _errors/report_warni ngs

Causes errors/warnings to be printed as they occur.
report

A short form for bothr eport _errors andreport _war ni ngs.
return_errors

If thisflagisset,{ error, ErrorList, Warni ngLi st} isreturned when there are errors.
retur n_war ni ngs

If thisflag is set, an extrafield, containing War ni ngLi st , isadded to the tuples returned on success.
warni ngs_as_errors

Causes warnings to be treated as errors. This option is supported since R13B04.
return

A short form for bothr et urn_errors andr et ur n_war ni ngs.
ver bose

Causes more verbose information from the compiler, describing what it is doing.
{sour ce, Fi | eNane}

Sets the value of the source, as returned by nodul e_i nf o(conpi l e).
{outdir,Dir}

Sets a new directory for the object code. The current directory is used for output, except when a directory has
been specified with this option.

export _all
Causes all functions in the module to be exported.

{i,Dr}
AddsDi r tothelist of directories to be searched when including afile. When encountering an - i ncl ude or -
i ncl ude_Ii b directive, the compiler searches for header filesin the following directories:

Ericsson AB. All Rights Reserved.: Compiler | 5

compile

e ".", thecurrent working directory of thefile server
e The base name of the compiled file
» Thedirectories specified using option i ; the directory specified last is searched first

{d, Macr o}
{d, Macr o, Val ue}

Defines a macro Macr o to have the value Val ue. Macr o is of type atom, and Val ue can be any term. The
default Val ue ist r ue.

{parse_transform Mdul e}

Causes the parse transformation function Mbdul e: par se_t r ansf or m 2 to be applied to the parsed code
before the code is checked for errors.

fromasm

Theinput fileis expected to be assembler code (default file suffix ".S"). Notice that the format of assembler files
is not documented, and can change between releases.

fromcore

Theinput file is expected to be core code (default file suffix ".core"). Notice that the format of core filesis not
documented, and can change between rel eases.

no_strict_record_tests
This option is not recommended.

By default, the generated code for operation Recor d#r ecord_t ag. fi el d verifies that the tuple Recor d
has the correct size for the record, and that the first element isthe tag r ecor d_t ag. Use this option to omit
the verification code.

no_error_nodul e_m snat ch

Normally the compiler verifies that the module name given in the source code is the same as the base name of
the output file and refuses to generate an output file if there is a mismatch. If you have a good reason (or other
reason) for having a module name unrelated to the name of the output file, this option disables that verification
(there will not even be awarning if there is a mismatch).

{no_auto_inport,[{F, A}, ...]}

Makes the function F/ A no longer being auto-imported from the er | ang module, which resolves BIF name
clashes. This option must be used to resolve name clashes with BIFs auto-imported before R14A, if it is needed
to call the local function with the same name as an auto-imported BIF without module prefix.

Note:

Asfrom R14A and forward, the compiler resolves callswithout module prefix to local or imported functions
before trying with auto-imported BIFs. If the BIF isto be called, usethe er | ang module prefix in the call,
not{ no_auto import,[{F, A}, ...]1}.

If this option is written in the source code, as a - conpi | e directive, the syntax F/ A can be used instead of
{F, A}, for example:

-compile({no auto import, [error/11}).

6 | Ericsson AB. All Rights Reserved.: Compiler

compile

no_aut o_i nport
Do not auto-import any functions from er | ang module.
no line_info
Omits line number information to produce a dightly smaller output file.

If warnings are turned on (optionr eport _war ni ngs described earlier), the following options control what type of
warnings that are generated. Except from { war n_f or mat , Ver bosi t y}, the following options have two forms:

e A war n_xxx form, to turn on the warning.
e« A nowar n_xxx form, to turn off the warning.

In the descriptions that follow, the form that is used to change the default value are listed.
{warn_format, Verbosity}
Causes warningsto be emitted for malformed format stringsasargumentstoi o: f or mat and similar functions.
Ver bosi ty selectsthe number of warnings:
e 0 =Nowarnings
e 1 =Warningsfor invalid format strings and incorrect number of arguments

e 2 =Warnings also when the validity cannot be checked, for example, when the format string argument isa
variable.

The default verbosity is 1. Verbosity 0 can also be selected by option nowar n_f or mat .
nowar n_bi f _cl ash
This option is removed, it generates afatal error if used.

Warning:

Asfrom beginning with R14A, the compiler no longer callsthe auto-imported BIF if the name clasheswith a
local or explicitly imported function, and a call without explicit module nameisissued. Instead, the local or
imported function is called. Still accepting nowar n_bi f _cl ash would make a module calling functions
clashing with auto-imported Bl Fs compilewith both the old and new compilers, but with completely different
semantics. Thisiswhy the option is removed.

The use of this option has always been discouraged. As from R14A, it isan error to useiit.

To resolve BIF clashes, use explicit module names or the { no_aut o_i nport, [F/ A]} compiler
directive.

{nowarn_bi f _cl ash, FAs}
This option is removed, it generates afatal error if used.

Warning:
The use of this option has always been discouraged. As from R14A, it isan error to useiit.

To resolve BIF clashes, use explicit module names or the { no_aut o_i nport, [F/ A]} compiler
directive.

Ericsson AB. All Rights Reserved.: Compiler | 7

compile

war n_export _all
Emitsawarning if option export _al | isalsogiven.
war n_export _vars

Emitswarningsfor all implicitly exported variables referred to after the primitives where they were first defined.
By default, the compiler only emits warnings for exported variables referred to in a pattern.

nowar n_shadow vars

Turns off warningsfor "fresh" variablesin functional objects or list comprehensions with the same name as some
already defined variable. Default isto emit warnings for such variables.

nowar n_unused_function

Turns off warnings for unused local functions. Default is to emit warnings for al local functions that are not
called directly or indirectly by an exported function. The compiler does not include unused local functionsin the
generated beam file, but the warning is still useful to keep the source code cleaner.

{nowar n_unused_functi on, FAs}

Turns off warnings for unused local functions like nowar n_unused_f uncti on does, but only for the
mentioned local functions. FAs isatuple{ Nane, Ari ty} or alist of such tuples.

nowar n_deprecat ed_function

Turnsoff warningsfor callsto deprecated functions. Default isto emit warningsfor every call to afunction known
by the compiler to be deprecated. Notice that the compiler does not know about attribute - depr ecat ed() , but
uses an assembled list of deprecated functionsin Erlang/OTP. To do a more general check, the Xref tool can be
used. See aso xref(3) and the function xref: m/1, also accessible through the function c:xnmv/1.

{nowar n_depr ecat ed_functi on, M-As}

Turns off warnings for calls to deprecated functions like nowar n_depr ecat ed_f unct i on does, but only
for the mentioned functions. MFAs isatuple{ Modul e, Nane, Ari t y} or alist of such tuples.

nowar n_depr ecat ed_t ype

Turns off warnings for use of deprecated types. Default is to emit warnings for every use of a type known by
the compiler to be deprecated.

war n_obsol et e_guard

Emitswarningsfor callsto old typetesting BIFs, suchaspi d/ 1 andl i st/ 1. Seethe Erlang Reference Manual
for acomplete list of type testing BIFs and their old equivalents. Default is to emit no warnings for calls to old
type testing BIFs.

war n_unused_i nport
Emits warnings for unused imported functions. Default is to emit no warnings for unused imported functions.
nowar n_unused_vars

By default, warnings are emitted for unused variables, except for variabl es beginning with an underscore (" Prolog
style warnings'). Use this option to turn off this kind of warnings.

nowar n_unused_record
Turns off warnings for unused record types. Default is to emit warnings for unused locally defined record types.

Another class of warnings is generated by the compiler during optimization and code generation. They warn about
patterns that will never match (such as a=b), guards that always evaluate to false, and expressions that always fail
(such asat om+42).

Those warnings cannot be disabled (except by disabling all warnings).

8 | Ericsson AB. All Rights Reserved.: Compiler

compile

Note:

The compiler does not warn for expressions that it does not attempt to optimize. For example, the compiler tries
to evaluate 1/ O, detects that it will cause an exception, and emits a warning. However, the compiler is silent
about the similar expression, X/ 0, because of the variablein it. Thus, the compiler does not even try to evaluate
and therefore it emits no warnings.

Warning:

The absence of warnings does not mean that there are no remaining errors in the code.

Note:

All options, except the include path ({i,Dir}), can adso be given in the file with attribute -
conpil e([Option,...]).Attribute-conpi |l e() isalowed after the function definitions.

Note:

The options {nowar n_unused_functi on, FAs}, {nowarn_bif _cl ash, FAs}, and
{nowar n_deprecat ed_functi on, M-As} areonly recognized when giveninfiles. They are not affected
by optionswar n_unused_f uncti on,warn_bi f _cl ash, orwarn_deprecat ed_functi on.

For debugging of the compiler, or for pure curiosity, the intermediate code generated by each compiler pass can be
inspected. To print acompletelist of the optionsto producelist files, typeconpi | e: opt i ons() at the Erlang shell
prompt. The options are printed in the order that the passes are executed. If more than one listing option is used, the
one representing the earliest pass takes effect.

Unrecognized options are ignored.

Both War ni ngLi st and Er r or Li st have the following format:

[{FileName, [ErrorInfo]}].

Error I nf o is described later in this section. The filename is included here, as the compiler uses the Erlang pre-
processor epp, which allows the code to be included in other files. It is therefore important to know to which file the
line number of an error or awarning refers.

forms (Forms)
Isthesameasf or ns(Forns, [verbose, report_errors, report_warnings]).

forms(Forms, Options) -> CompRet

Types:
Forms = [Form

Ericsson AB. All Rights Reserved.: Compiler | 9

compile

ConpRet = BinRet | ErrRet

Bi nRet = { ok, Mbdul eNan®e, Bi nar yOr Code} |
{ ok, Modul eName, Bi nar yOr Code, War ni ngs}

Bi naryOr Code = binary() | tern()
ErrRet = error | {error, Errors, Wr ni ngs}

Analogoustof i | e/ 1, but takesalist of forms (in the Erlang abstract format representation) asfirst argument. Option
bi nary isimplicit, that is, no object code file is produced. For options that normally produce a listing file, such as
'E', theinternal format for that compiler pass (an Erlang term, usually not a binary) is returned instead of a binary.

format error(ErrorDescriptor) -> chars()
Types:
ErrorDescriptor = errordesc()

Usesan Error Descri pt or and returns a deep list of characters that describes the error. This function is usually
called implicitly when an Er r or | nf o structure (described in section Error Information) is processed.

output generated(Options) -> true | false
Types:
Options = [term()]
Determines whether the compiler generates a beamfile with the given options. t r ue means that a beamfile is

generated. f al se means that the compiler generates some listing file, returns a binary, or merely checks the syntax
of the source code.

noenv_file(File, Options) -> CompRet
Works like file/2, except that the environment variable ERL_COVPI LER_OPTI ONS is not consulted.

noenv_forms(Forms, Options) -> CompRet
Works like forms/2, except that the environment variable ERL_COVPI LER_OPTI ONS is not consulted.

noenv_output generated(Options) -> true | false
Types:
Options = [term)]
Works like output_generated/1, except that the environment variable ERL_ COVMPI LER_OPTI ONS is hot consulted.

Default Compiler Options

The (host operating system) environment variable ERL_ COVPI LER _OPTI ONS can be used to give default compiler
options. Its value must be avalid Erlang term. If thevalueisalist, itisused asis. If itisnot alist, itisputinto alist.

The list is appended to any options given to file/2, forms/2, and output_generated/2. Use the alternative functions
noenv_file/2, noenv_forms/2, or noenv_output_generated/2 if you do not want the environment variable to be
consulted, for example, if you are calling the compiler recursively from inside a parse transform.

Thelist can be retrieved with env_compiler_options/0.

Inlining

The compiler can do function inlining within an Erlang module. Inlining means that a call to a function is replaced
with the function body with the arguments replaced with the actual values. The semantics are preserved, except if

10 | Ericsson AB. All Rights Reserved.: Compiler

compile

exceptions are generated in the inlined code. Exceptions are reported as occurring in the function the body wasinlined
into. Also, f unct i on_cl ause exceptions are converted to similar case_cl ause exceptions.

When afunction isinlined, the original function is kept if it is exported (either by an explicit export or if the option
export _al | wasgiven) or if not al calsto the function areinlined.

Inlining does not necessarily improve running time. For example, inlining can increase Beam stack use, which probably
is detrimental to performance for recursive functions.

Inlining isnever default. It must be explicitly enabled with acompiler optionor a- conpi | e() attributein the source
module.

To enableinlining, either usethe optioni nl i ne to let the compiler decide which functionstoinline, or {i nl i ne,
[{Nane, Arity},...]} tohavethecompilerinlineall callsto the given functions. If the option isgiven inside a
conpi | e directivein an Erlang module, { Nare, Ari ty} canbewrittenasNane/ Arity.

Example of explicit inlining:

-compile({inline, [pi/0]1}).

pi() -> 3.1416.
Example of implicit inlining:

-compile(inline).

The option {i nl i ne_si ze, Si ze} controls how large functions that are allowed to be inlined. Default is 24,
which keeps the size of the inlined code roughly the same as the un-inlined version (only relatively small functions
areinlined).

Example:

%% Aggressive inlining - will increase code size.
-compile(inline).
-compile({inline size,100}).

Inlining of List Functions

The compiler can also inline various list manipulation functions from the modulel i st in STDLIB.

This feature must be explicitly enabled with acompiler option or a- conpi | e() attributein the source module.
To enableinlining of list functions, use optioni nl i ne_l i st _funcs.

The following functions are inlined:

o listsiall/2

o listsany/2

o lists:foreach/2
o listssmap/2

e ligts:flatmap/2
o listsfilter/2

o lists:foldl/3

Ericsson AB. All Rights Reserved.: Compiler | 11

compile

o listsifoldr/3
e lists:mapfoldl/3
o listssmapfoldr/3

Parse Transformations

Parse transformations are used when a programmer wants to use Erlang syntax but with different semantics. The
original Erlang code is then transformed into other Erlang code.

Error Information

The Er r or | nf o mentioned earlier is the standard Er r or | nf o structure, which is returned from all 1/O modules.
It has the following format:

{ErrorLine, Module, ErrorDescriptor}

Er r or Li ne istheatom none if the error does not correspond to a specific line, for example, if the source file does
not exist.

A string describing the error is obtained with the following call:

Module:format error(ErrorDescriptor)

See Also
epp(3), erl_id_trans(3), erl_lint(3), beam lib(3)

12 | Ericsson AB. All Rights Reserved.: Compiler

	Compiler
	Reference Manual
	compile
	env_compiler_options/0
	file/1
	file/2
	forms/1
	forms/2
	format_error/1
	output_generated/1
	noenv_file/2
	noenv_forms/2
	noenv_output_generated/1

